Adenosine Injection, USP

- Adenosine injection is indicated for conversion to sinus rhythm of paroxysmal supraventricular tachycardia (PSVT), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers (e.g., Valsalva maneuver), should be attempted prior to adenosine administration.

- It is important to be sure the adenosine solution actually reaches the systemic circulation (see DOSAGE AND ADMINISTRATION).

- Adenosine does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following adenosine administration.

- Adenosine injection is contraindicated in second or third-degree A-V block (except in patients with a functioning artificial pacemaker).

- Adenosine injection is contraindicated in sinus node disease, such as sick sinus syndrome or symptomatic bradycardia (except in patients with a functioning artificial pacemaker).

- Adenosine injection is contraindicated in known hypersensitivity to adenosine.

- Available direct or through your authorized wholesaler or distributor

Adenosine Injection, USP

- **ACTIVE:** 3 mg Adenosine;
- **PRESERVATIVE:** None;
- **INACTIVES:** 9 mg Sodium Chloride in Water for Injection, pH of the solution is between 4.5 and 7.5.
- **STORAGE:** Store at 20°C to 25°C (68°F to 77°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE as crystallization may occur. If crystallization has occurred, dissolve crystals by warming to room temperature. The solution must be clear at the time of use.

To order products call 800-932-5676 or fax 800-943-3694 • www.akorn.com

NOT FOR PRESCRIBING PURPOSES. PLEASE REFER TO PACKAGE INSERT FOR FULL PRESCRIBING INFORMATION.
ADENOSINE INJECTION, USP

For Rapid Bolus Intravenous Use

DESCRIPTION

Adenosine is an endogenous nucleoside occurring in all cells of the body. It is chemically 6-aminohexyl-β-D-ribofuranosyl-9-H-purine and has the following structural formula:

\[
\text{H}_2\text{N}\text{C}_6\text{H}_4\text{O}\text{N}_7\text{H}_2\text{O}
\]

Adenosine is a white crystalline powder. It is soluble in water and practically insoluble in alcohol. Solubility increases by warming and lowering the pH. Adenosine is chemically related to other adenosine drugs.

Adenosine injection is a sterile, nonpyrogenic solution for rapid bolus intravenous injection. Each mL contains 3 mg adenosine, and 9 mg sodium citrate, in Water for Injection. The pH of the solution is between 4.5 and 7.5.

CLINICAL PHARMACOLOGY

Mechanism of Action

Adenosine injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT caused by Wolff-Parkinson-White Syndrome.

Adenosine is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine is not blocked by atropine.

Mechanism of Action

Adenosine is a white crystalline powder. It is soluble in water and practically insoluble in alcohol. Solubility increases by warming and lowering the pH. Adenosine is chemically related to other adenosine drugs.

Adenosine injection is a sterile, nonpyrogenic solution for rapid bolus intravenous injection. Each mL contains 3 mg adenosine, and 9 mg sodium citrate, in Water for Injection. The pH of the solution is between 4.5 and 7.5.

CLINICAL PHARMACOLOGY

Mechanism of Action

Adenosine injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT caused by Wolff-Parkinson-White Syndrome.

Adenosine is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine is not blocked by atropine.

Mechanism of Action

Adenosine injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT caused by Wolff-Parkinson-White Syndrome.

Adenosine is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine is not blocked by atropine.

Mechanism of Action

Adenosine injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT caused by Wolff-Parkinson-White Syndrome.

Adenosine is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine is not blocked by atropine.

Mechanism of Action

Adenosine injection slows conduction time through the A-V node, can interrupt the reentry pathways through the A-V node, and can restore sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT caused by Wolff-Parkinson-White Syndrome.

Adenosine is antagonized competitively by methylxanthines such as caffeine and theophylline, and potentiated by blockers of nucleoside transport such as dipyridamole. Adenosine is not blocked by atropine.